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Abstract. Weakly supervised semantic segmentation (WSSS) reduces
the cost of pixel-level annotation by training models with only image-
level labels. In this work, we first establish a unified benchmark evaluat-
ing three CAM-based localization methods—CAM, Erased CAM (ECS-
CAM), and Contrastive CAM (CCAM)—under identical training and
augmentation protocols. Building on their complementary strengths, we
propose an ensemble framework that fuses multi-method activation maps
and applies a lightweight CRF-based refinement to produce high-quality
pseudo-pixel labels. To further improve mask completeness and back-
ground suppression, we introduce two novel training strategies: (1) aug-
menting with background-only images by adding a “bg” class, and (2)
a pet-specific contrastive fine-tuning stage that treats each breed as a
separate category within CCAM. Finally, we use these pseudo-labels
to train a U-Net segmentation network and compare its performance
against a fully supervised U-Net baseline. Our best weakly supervised
model achieves 61.6 %(finetune) and 76 %(pretrain) IoU comparing to
the 68.25 % on fully supervised baseline model.

1 Introduction

Deep convolutional neural networks have driven remarkable advances in com-
puter vision tasks such as object detection and semantic segmentation. However,
these successes depend critically on large-scale datasets with precise, pixel-level
annotations—annotations that are both labor-intensive and costly to acquire at
scale. Weakly supervised semantic segmentation (WSSS) seeks to alleviate this
bottleneck by training segmentation models using only weak labels (e.g., image-
level tags, bounding boxes, scribbles), thereby reducing annotation cost while
still achieving competitive performance.

A popular WSSS paradigm leverages class activation maps (CAMs) [6] to
localize the most discriminative object regions from image-level labels. While
CAMs provide a useful starting point, they typically highlight only the core
object parts and fail to cover full object extents, limiting segmentation quality.
To address this, Erased Class Activation Mapping (ECS-CAM) [] iteratively
removes highly activated regions, compelling the network to discover additional
object parts. More recently, Class-Agnostic Activation Mapping (CCAM) [5] em-
ploys contrastive learning to better separate foreground and background, yielding
more complete activation masks.
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In this work, we build upon these CAM-based techniques and make the fol-
lowing contributions. We first benchmark CAM, ECS-CAM and CCAM under
a unified training protocol, then introduce an ensemble of their activation maps
plus lightweight post-processing, enhanced by background-only augmentation
and class-specific contrastive refinement, to produce high-quality pseudo-labels
from image-level tags. Finally, we apply these pseudo-labels to train a segmenta-
tion network and compare its performance against a fully supervised counterpart.

The remainder of this paper is organized as follows. In Section [2] we in-
troduce methods on CAM enhancements and pipeline. Section [3] describes our
experiments setup and training strategies. Experimental results and ablations
are presented in Section [4] and discussed in Section [5} and we conclude in Sec-
tion [6

2 Methods

As illustrated in Fig. [I} our framework consists of three stages: (1) Feature Ex-
traction, where input images are passed through a modified ResNet-50 back-
bone [5] and the last two convolutional blocks are retained as deep feature maps;
(2) Pseudo-Label Generation, in which class activation mapping (CAM), its
contrastive learning refinement (CCAM), and Erasing (ECS) produce candidate
masks from the feature maps, and the best mask is further refined by a CRF
ﬁlterﬂ and (3) Segmentation Training, where the CRF-filtered mask serves
as a pseudo-ground truth to train a U-Net for the final pixel-level segmentation.
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Fig.1: Overall architecture of the proposed weakly-supervised segmentation
pipeline. Deep features are extracted by a modified ResNet-50, converted into
class-specific activation maps (CAM, CCAM, ECS), refined via CRF, and finally
used as pseudo-labels to train a U-Net.

! Due to length limitations, the detailed introduction on CRF [2] is shown at Ap-
pendix@
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2.1 Class Activation Maps

Class Activation Mapping (CAM) [6] remains a cornerstone of weakly-supervised
segmentation, since it produces class-specific heatmaps without requiring pixel-
level labels. Given a CNN’s final convolutional feature maps fi(z,y), we form
channel-wise descriptors by global average pooling,

Fk:ka(x7y)’ (1)

and obtain the pre-activation score for class ¢ via
Se=Y wiF* =3 wi) fulz,y), (2)
k k Yy

where wj are the weights of the classification layer. Reordering yields the acti-
vation map

Mc(xay) :Zwlf' .fk(xvy)v (3)
k

which highlights regions driving the class decision. However, CAM typically fo-
cuses on only the most discriminative object regions rather than the full object
extent. To address this limitation, we apply the following refinement steps.

2.2 Erased Class Activation Mapping

Erased Class Activation Mapping (ECS-CAM) [4] builds on CAM by forcing
the model to discover less salient object parts. Specifically, after computing the
initial heatmap M. (x,y) for class ¢, we suppress its top-activated regions in
the input (e.g. via blurring). Re-applying CAM to this erased image yields a
secondary map Mecs(x,y) that highlights previously neglected areas. We then
fuse both maps:

Mﬁnal(xvy) = maX(Mc(%y% Mecs(m7y))v (4)

thereby covering both core and peripheral object regions and producing a more
complete localization under weak supervision.

2.3 Contrastive Learning of Class-Agnostic Activation Mapping

Contrastive Class-Agnostic Activation Mapping (CCAM) [5] learns to separate
foreground from background without class labels. From an input image X;, a
ResNet-50 backbone produces feature maps Z;, and a lightweight Disentangler
head generates a class-agnostic activation map P; € [0, 1]#*W_ The background
map is 1 — P;. We pool features into descriptors:

ol =Pzl W =0-p)zF

70

with v/, o0 € R,
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We then apply a contrastive loss that (1) pushes all foreground—background

pairs (vf ,v;?) apart,

1
LNEG = 3 Zlog(l — sim(vlf,v;?)),

i,J

and (2) pulls semantically similar pairs within foregrounds and within back-
grounds together,

1 . .
Lpos = e Z(wfj log sim(v/, vjf) + w) ;log sim(v},v})),
it

where sim(a, b) = a'b/(||al/||b]]) and w;{]} are rank-based weights. The total loss
L = Lnec + Lpos refines P; to accurately delineate full object regions.

2.4 Open-Ended Exploration

Dataset Augmentation Incorporate background-only images as negative sam-
ples to improve the CAM related methods’ performance.

Class-Specific Training Split images by bleed (i.e. Abyssinian) and fine-tune
separate ResNet-50 branches to specialise occlusion handling.

These modifications remain fully weakly supervised without adding pixel-level
labels.

3 Experiments

Dataset Our approach is trained and evaluated on the Oxford-IIIT Pet Dataset
[3]. This dataset contains 7,349 images of 37 pet breeds (12 cat breeds and 25
dog breeds), each annotated with pixel-level segmentation masks and image-level
breed labels. It is noted that only image-level labels, rather than pixel-level
annotations, are employed by our methods. The original dataset is split into 80%
as training images and 20% as test images. We also evaluated on the |Stanford
Background Dataset| [1], which comprises 715 outdoor scenes from LabelMe,
MSRC, PASCALVOC and Geometric Context, all annotated with semantic and
geometric labels via AMT.

Setup We start with a ResNet-50 backbone pretrained on ImageNet, then
fine-tune it for either 37-way pet classification or binary cat-vs-dog classifica-
tion. From the resulting classifier we generate CAM, ECS-CAM, CCAM, and
CCAM+ECS activation maps, which are post-processed with dense CRF and
thresholded at 0.3 to produce pseudo-masks. Finally, these masks supervise the
training of a U-Net segmentation model.


https://www.robots.ox.ac.uk/~vgg/data/pets/
https://www.kaggle.com/datasets/balraj98/stanford-background-dataset
https://www.kaggle.com/datasets/balraj98/stanford-background-dataset
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Table 1: Evaluation on CAM-based pseudo-mask generation

performance Pretrained 2-Class 37-Class
method ToU Dice IoU Dice IoU Dice
CAM 26.03 40.51 12.73 21.7 20.89 33.19
CAM+ECS 25.68 40.13 13.64 23.13 20.98 33.32
CCAM 68.21 80.32 41.07 55.85 15.1 23.93
CCAM+ECS — — — — 24.59 37.31

Evaluation metrics Two widely used metrics for semantic segmentation eval-
uate the overlap between the predicted mask S and the ground-truth mask G:

S NG| Dice — 21SNG|

ToU = , === 7
ERRTIVYE] EENE

()

Open-Ended Experiments We augment the training set with background-
only images, expanding the classifier to 38-way (pets+background) or 3-way (cat,
dog +background). This additional “bg” class helps suppress false positives. In
addition to background augmentation, we explore a pet-specific contrastive fine-
tuning stage for CCAM. We treat each of the 37 animal breeds as a separate
category, sampling intra-class positives and inter-class negatives to strengthen
feature discrimination. This targeted contrastive stage produces sharper, more
complete activation maps for each pet type.

4 Results

Table 2: Data enhancements performance
performance 2-Class 2 /bg-Class 37-Class 37/bg-Class
method IoU Dice IoU Dice IoU Dice IoU Dice
CAM 12.73 21.7 29.64 45.27 20.89 33.19 20.9 33.2
CAM+ECS 13.64 23.13 29.24 4481 20.98 33.32 21.44 33.96
CCAM 41.07 55.85 4858 63.27 151  23.93 29.08 41.76
CCAM+ECS — — 48.65 63.44 2459 37.31 42.8 58.36

5 Discussion

Table [1] compares CAM, CAM+ECS, CCAM and CCAM+ECS on ImageNet-
pretrained, 2-class (cat vs. dog) and 37-class (breeds) backbones. The pretrained



Table 3: Result on Class-specific training process and Baseline performance

performance Pretrained 2-Class 37-Class 37-Class/U-Net
method IoU Dice IoU Dice TIoU Dice ToU Dice
CCAM 68.21 80.32 5297 67.63 59.78 73.26 59.29 73.63
CCAM+dCRF 76.02 85.64 51.15 64.99 59.79 7232 61.58 75.3
U-Net IoU: 68.25 Dice: 84.77 - -

model outperforms all trained variants, underscoring the benefit of large-scale
pretraining. Adding ECS to CAM yields small but consistent gains. CCAM’s
contrastive learning greatly improves mask quality in the 2-class setting, though
its advantage shrinks on 37 classes—Ilikely due to overfitting to fine-grained breed
details. CCAM+ECS on the 37-class model recovers lost performance by smooth-
ing boundaries and fixing isolated errors; the 2-class model quickly diverges
(erasing content), and the pretrained backbone fails to match when fine-tuned
with cross-entropy due to different datasets.

Table [2| shows that adding the background as a contrastive class boosts both
IoU and Dice for all models. In the 2-class case, IoU jumps from 12.73 to 29.64
and Dice from 21.70 to 45.27 (CAM). In the 37-class case, IoU rises from 15.10
to 29.08 and Dice from 23.93 to 41.76 (CCAM), reaching up to 42.80/58.36
with ECS. This confirms that an explicit background class helps localize salient
regions. For class-specific experiments shown in Table 3] the 37-class model out-
performs the 2-class model, as fine-grained breeds share more consistent regions
than a simple cat/dog split. The ImageNet-pretrained backbone still achieves
the highest scores, owing to its training on far more images (hundreds of breeds
x thousands of images) versus 200 images per breed in our dataset. Although
quantitative metrics for our methods remain close to the backbone, visualiza-
tions show noticeably cleaner masksﬂ Applying a CRF post-processing step to
the pretrained model sharpens object boundaries—improving visual quality even
if IoU/Dice drop slightly—while other methods see minimal change under CRF.

6 Conclusion

We have shown that diverse CAM-based localization techniques can be system-
atically combined to generate robust pseudo-masks from only image-level tags.
Our unified benchmark revealed distinct failure modes of CAM, ECS-CAM, and
CCAM, which we address via an ensemble fusion and lightweight CRF refine-
ment. Introducing background-only augmentation and pet-specific contrastive
fine-tuning further enhances mask completeness and reduces false positives. Our
current study is constrained by the size and diversity of the pet dataset. In future
work, we will scale to larger, more varied datasets.

2 Example images are shown in Appendix
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A Dense Conditional Random Fields

Dense Conditional Random Fields (Dense CRFs) are commonly employed as a
post-processing step to refine coarse semantic segmentation outputs by enforcing
spatial and appearance consistency across all pixel pairs. Given an image with
pixels ¢ € {1,..., N}, let z; denote the label assigned to pixel i. A dense CRF
defines the Gibbs energy of a labeling x = {z;} as

where:

— Yy (x;) is the unary potential for pixel i, typically derived from a CNN’s
softmax log-probabilities.
— p(x, ;) is the pairwise potential, defined as

M
wp(x’tax]) = :u(xhxj) w(m) k(m)(fhfj)? (7)
m=1
with:
o u(x;,x;) the label compatibility function (often the Potts model, p(a,b) =
1la # b]).

e k™ (f;, f;) Gaussian kernels on feature vectors f; (e.g., pixel positions
and colors), each weighted by w(™).

Exact inference is intractable due to the fully-connected graph; however, the
mean-field approximation enables efficient approximate inference in O(N) time
per iteration using high-dimensional filtering (e.g. permutohedral lattice). In
practice, integrating a dense CRF with CNN outputs sharpens object bound-
aries and removes spurious activations, yielding significant improvements in seg-
mentation metrics with minimal computational overhead.

Algorithm 1 Mean field in fully connected CRF's
1: Initialize Q
2: while not converged do

3: é§m>(l) — Z E™(fi, 1) Q1) Ym > Message passing
J#i
4: Qi) + Z 1™ (2, 1) Z w™ Q™ (1) > Compatibility transform
lel m
Qi(zi) « exp{—tpu(z:i) — Qi(w:)}

normalize Q;(z;) > Local update
end while
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B Example Images

Here are images on a class specific training.
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Fig.2: Images from left to right: Original Image, CCAM, CCAM Mask and
CCAM Mask + CRF
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