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Abstract

This dissertation delves into the intricate structures and dynamics of supergravity, fo-
cusing on 11-dimensional supergravity and its extensions through consistent truncation
and dimensional reduction. The exploration begins with the application of the p-brane
ansatz to derive distinct brane solutions, such as 2-branes and 5-branes, and extends
to the study of multi-brane configurations to understand the orbital dynamics of probe
branes. A detailed investigation of the dimensional reduction process, particularly the
S1 reduction, systematically reduces the dimensional setting and examines the implica-
tions for the supergravity action. This approach is expanded to successive reductions
represented as T", analysing modifications in the Lagrangian and the emergence of scalar
symmetries alongside their associated coset spaces. The dissertation also addresses T-
duality within supergravity, focusing on resolving the chirality issues in type IIA and IIB
theories by reducing them to nine dimensions, which facilitates their unification and the
application of T-duality. The insights gained from this study link to broader theoretical
frameworks like M-theory, and future directions in the field are discussed. This work sig-
nificantly enhances our understanding of the landscape of string theory and supergravity,
highlighting new possibilities for theoretical advances and practical applications.
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Chapter 1

Introduction

There are four fundamental forces in the universe: electromagnetism, the strong force,
the weak force, and gravity. Unifying these forces has become a major goal for theoretical
physics. After centuries of work, the Standard Model was constructed to describe the
unified nongravitational fields. This leaves gravity, and one of the central problems in
modern physics is to unify it with the other forces. This endeavour is known as quantum
gravity.

Supergravity is among the most well-known topics in quantum gravity. It is a gravita-
tional theory that combines general relativity and supersymmetry. Although it encounters
problems in treating ultraviolet divergences [1], its mathematical structure under certain
constraints is still remarkable. In this theory, we discuss dynamics based on a set of
new objects called “branes”. We can calculate their equations of motion under certain
spacetimes.

We can relate zero-dimensional branes, or O-branes, to black holes. This allows the
dynamics of black holes to be studied in the framework of supergravity [2]. The analogies
between 0-brane solutions and Schwarzschild black holes help us to gain a better under-
standing of their behaviour near the event horizon. Another important example of a brane
is the 1-brane, which represents a string in supergravity. This builds a connection from
supergravity to superstring theory. With duality symmetry and dimensional reduction,
one can convert 11-dimensional supergravity into 10-dimensional superstring theory. For
higher dimensions, we have D-branes, which can describe the interaction between strings
[3]. This link leads to a unified approach called M-theory [4], which includes type I string
theory, type ITA string theory, type IIB string theory, heterotic Eg x Eg string theory,
heterotic SO(32) string theory and 11D supergravity.

The method of dimensional reduction in supergravity is called Kaluza—Klein dimen-
sional reduction. It provides an effective approach to constructing solutions for 11D
supergravity. By leveraging solutions in lower dimensions, one can gain insights into
the higher-dimensional problem [5]. Two major approaches are diagonal and vertical
dimensional reduction [6]. However, dimensional reduction causes the number of scalars
to increase. For example, we obtain an extra scalar in 10 dimensions. Accumulation
of scalars can make calculations more complicated. To deal with this, we use duality
symimetry.

Instead of studying M-theory directly, we start with a basic discussion of brane mo-
tion and possible solutions. This will assist in our understanding of supergravity and
M-theory. In Chapter 2, we will present some basic theoretical frameworks that support
our discussion. In Chapter 3, we explore the realm of 11-dimensional supergravity and its
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extension to general D-dimensional frameworks via consistent truncation. Our journey
begins with the application of the p-brane ansatz to derive specific brane solutions. The
choice of ansatz will lead to two distinct types of solutions. To validate these findings,
we will examine the most straightforward scenario of D = 11, which will demonstrate
the emergence of 2-brane and 5-brane solutions. The chapter concludes with an investi-
gation into multi-brane configurations, examining the orbital dynamics of a probe brane
influenced by a much larger background brane.

Chapter 4 focuses on the crucial technique of dimensional reduction, which was briefly
introduced in Chapter 3. We start by detailing the S* reduction process, which systemati-
cally reduces the setting from (D+1) to D dimensions [7], and we discuss the implications
of this truncation for the supergravity action. This concept is further extended to include
successive reductions, represented as T". Throughout the chapter, we will explore the
modifications to the Lagrangian at each dimensional level and conclude with an exam-
ination of the scalar symmetries that emerge during reduction, particularly their coset
spaces.

In Chapter 5, we discuss T-duality in the framework of supergravity, in which we
cannot link type ITA and IIB theories in 10 dimensions because of their inconsistent chi-
rality. Our exploration will centre on the application of dimensional reduction techniques
to type ITA and IIB superstring theories, reducing them to nine dimensions. This allows
the chiral property of the type IIB theory to be removed, which leads to the unification
of these two theories.

In the final chapter of this dissertation, we will review the main discoveries and ideas
discussed in the previous chapters. Each part of this work has deepened our understanding
of complex theories, such as string theory and supergravity. We will summarise these
insights and show how they connect to M-theory. Additionally, we will look ahead at
possible future developments in this field.



Chapter 2

Theoretical Background

A suitable theoretical framework and definitions are necessary for the derivation of brane
solutions and subsequent discussion. In this chapter, we will introduce several new con-
cepts, including forms, and operations on them.

2.1 Forms and the Wedge Product

An n-form is a completely antisymmetric tensor of type (0, n), represented as
Vit = Vipropn] = Vin)- (2.1)
As a cotensor, V' can be expanded using the tensor product of differential forms:
V=V, idr" ® ... ®dz". (2.2)

Transitioning to an n-form basis, dz®* A dx™ A ... A dz', yields

1 . . .
V==V i, dz" Adx® AL A dat (2.3)
n

where A denotes the wedge product, which combines differential forms. Given a p-form
A and a ¢-form B, their wedge product, a (p + ¢)-form, is given as follows:

(p+9)!
(A A B)u1"'up+q = WA[ltl'"lthupﬂ"'Mpﬂ]' (2'4)

For example, the wedge product of two one-forms is
(AN B)u, =24A,B,=A,B, —A,DB,. (2.5)
Additionally, the wedge product satisfies the following antisymmetry property:

AAB = (-1"B A A (2.6)

2.2 Exterior Derivative

We define an exterior derivative d as an operator that takes an n-form V' to an (n+1)-form
av:
(AdV)iy.insr = (04 1), Viy i) (2.7)

4
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One familiar example is the Maxwell field strength F', which is the exterior derivative of
the potential A:
F=dA=20,A,, (2.8)

where we use a one-form potential. If we have a wedge product of a p-form w and a
g-form 7, the exterior derivative obeys the Leibniz rule:

d(wAn) = (dw) An+ (—1)Pw A (dn), (2.9)

which results in a (p + ¢ — 1)-form.

2.3 Levi—Civita Tensor
The Levi-Civita symbol is defined as follows:

+1  if pype - - -y is an even permutation of 01---(n — 1),
€prpgpn = § —1 if papue -+ -y, is an odd permutation of 01---(n — 1), (2.10)

0 otherwise,

which is completely antisymmetric. We then define the Levi-Civita tensor as follows:

€z = V191€upapns (2.11)

where g is the determinant of the metric g,,. The contraction rule of Levi-Civita tensors

1S
HTIOTDE gty = (=1)P = )G 557, (2.12)

where s = 1 is the number of time coordinates on the manifold.

2.4 Hodge Duality

We define the Hodge star operator on an n-dimensional manifold as a map from p-forms

to (n — p)-forms:
(xA) = =€ iy Ay vy (2.13)

M1 Bn—p

Applying the Hodge star twice yields either the original form or its negation:
sk A= (=1)*TPn=P) 4, (2.14)

One can therefore find that using the Hodge star and the exterior derivative gives the
following divergence:

(xd % A)py s = (_1)s+p(n—p)VVAm,,,up_1y. (2.15)
2.5 Integration
Using (2.10) and (2.11), one can define a volume n-form:
1
e=/|gldz' A ... Ada" = TV |91€pr . d? A LN dat (2.16)

>
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where the volume element d"x can be turned into a tensor density form such as that in
(2.3):
d"r =da" A+ Ada™ (2.17)

Using (2.16) and (2.17), we can write an n-form tensor into

= Mg ... p
€= €ppop, A2 @ - @ datn

1
—{Curen da#* A - Adat
1.
— E /|g|g;1/1"';l/n dxul /\ ... /\ dxun (218)

= lg|ldz® A -+ Ada™ !

= \/Ed":c.

Combining the ideas we have introduced throughout this section, the Hodge duality of a

O-form can be defined as follows:

«l=¢ (2.19)

Y

The integral I of a scalar function ¢ over an n-manifold is written as follows:
I= /¢($)\/|g|d”:v = /gb(x) 1. (2.20)
Finally, if we have two p-forms A and B, the simple form can be obtained as follows:

1
*ANB = = Ay, B 5 1 (2.21)
p



Chapter 3

Brane Solution in Supergravity

In this chapter, we will explore the brane solution within the framework of supergravity,
beginning our discussion with an 11-dimensional bosonic action. This foundational action
enables us to derive the equations of motion (EoMs) for each component. Following this,
we apply a consistent truncation to the action, reducing it to a system in D dimensions.
This process allows us to obtain specific EoMs related to curvature and field strength.

By employing an ansatz on the metric, we can solve the EoMs, yielding a detailed
solution in a generalised D-dimensional form. Upon obtaining the brane solution, we
specifically set D = 11 to examine the properties of the brane within the supergravity
framework. Additionally, we derive the motion of the brane under certain assumptions,
providing deeper insights into its behaviour.

3.1 11D Supergravity

It is crucial to first elucidate why the selection of 11 dimensions significantly simplifies
our equations. This particular choice is intimately linked to the unique properties of
supersymmetry algebra, as highlighted in the following equation [8]:

{Q.Q} = C (T P4+ T*PUsp + TP Vapepr) (3.1)

where U and V are charges derived later in the discussion. Here, C represents the charge
conjugation matrix and P the energy—momentum tensor. This algebraic structure ensures
that, in our supergravity framework, we only need to consider the metric gy, the gauge
field Ap, and the gravitino ¢. However, this form does not exist in lower-dimensional
supergravity.

Upon reducing the dimensionality, additional scalar fields, known as dilatons, emerge.
Conversely, in dimensions exceeding 11, a supergravity theory does not exist; this lim-
itation is dictated by supersymmetry itself, which prohibits spins higher than 2, and
inherently caps the maximum number of supercharges at 32, aligning precisely with the
component structure of 11-dimensional supergravity.

Let us start with the bosonic action [9] with a vanishing fermionic gravitino:!

1 1
I = /d“x {\/—g (R - EF[%”)} - E/F[4] A Fag A A (3.2)

In maximal supergravity, we usually assume a spin 3/2 gravitino.
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Here we use g to represent the determinant of the metric and Fjy for the field strength
generated by a 3-form antisymmetric gauge potential. To find the EoM for the gauge
potential of (3.2), we apply the variation 0/;;. Using the properties of forms given by
(2.2), (2.13) and (2.16), one can find that?

5(F[?q> XX (5 (F[4] A *Fm) X 514[3] A d * F[4]. (3.3)

Then, the EoM with respect to A is as follows:
1
d % F[4] + §F[4} AN F[4] =0. (3.4)

Hence, one can find the conserved quantity from the above equation. Considering the
order of the form, this quantity can be constructed as an integral over a 7-form space
with an 8-dimensional boundary 0Ms [10]:

1
U = / (*F[4] + 514[3} A ﬂ4]> , (35)
OMs

which is termed “electric” charge. We can also find the Bianchi identity dFjy = 0, which
gives rise to another conserved quantity:

V= / Py (3.6)
oM

5

This is termed “magnetic” charge and it has a 5-dimensional boundary M;. Both U and
V' contribute to the supersymmetry algebra described by (3.1). To discuss this charge,
we first need to consider its supergravity solutions, the simplest of which is found by
applying the “p-brane ansatz”. Further details are provided in the next section.

3.2 Single-Charge Action

The structure of 11-dimensional supergravity is clear and elegant, but it needs to connect
to a quantum theory of gravity. It would be convenient for us to consider a general form
that contains metric, scalar and gauge potentials. This is known as an effective field
theory and couples supergravity with matter fields. A similar configuration, called the
Neveu-Schwarz/Neveu-Schwarz (NS-NS) sector, is achieved in superstring theory. For
example, one can have an NS-NS sector under a string theory framework [11] as follows:

Lg = [dPx/=ge™* [(D — 26) — 3o/ (R + 4V?¢ — 4(V)? 57

_%FMNPFMNP +0 (0/)2} ' ( : )
Our target action for supergravity is similar and needs to satisfy the dimension limit.
In string theory, we have a maximum of 26 dimensions, which can be seen in the term
(D —26). Analogously, we replace it with (D —10) since string theory in the supergravity
framework has a maximum of 10 dimensions. Using a suitable Weyl transformation® and

2The detailed derivation is trivial, but it is necessary to be careful with the coefficient. The full
calculation can be found in Section A.1.
3We shall discuss a systematic method to obtain a reduced string theory in Chapter 4.
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frame changing, one can obtain a specialised version of the effective action in D = 10 [8]:

strin; . _ s 1
Iy :/dl%\/ —g®) {6 2 [R (9( )) + 4V VMo — EFMNPFMNP
3.8
1 (38)

1
T MNPQFMNPQ - Z}_MNFMN} + Lrra,

where the last term is called the Chern—Simons term.

In (3.8), we have seen a combination of different field strengths, scalars and metrics.
For explanatory purposes, we apply a consistent truncation [12] to this effective action
that constrains the equation to have only one field strength, one scalar and one metric:

1 1
I= / dPz\/—g {R - §VM¢VM¢ - Tn!fﬂwﬂ . (3.9)

This is known as a single-charge action. Since the solutions obtained from the truncated
theory can be applied to the untruncated theory [8], we will later set D = 11 to find the
original solution.

Varying (3.9) with respect to gan, Ap—1) and ¢, we can obtain a set of EoMs:*

1
Ryn = 53M¢3N¢ + Sun,
1
_ a¢ e
SMN 2(71—1)'6 (FMFN n

le (emz)FMl...Mn) — 0’
_ O aep2
O = 5 1e"*F>.

(3.10)

To solve all the EoMs, it is necessary to make a different ansatz. Let us consider the metric
first. Our solutions need to preserve certain unbroken supersymmetries and translational
symmetries. These requirements can be fulfilled in our construction of the ansatz as it
has (Poincaré)y; x SO(D — d) symmetry. Hence, we consider a total D-dimensional space
that is composed of a d-dimensional hyperplane, also known as a worldvolume, and a
(D — d)-dimensional transverse space. Subsequently, the spacetime coordinates can be
split into ™ = (a# 2™). Variables with Greek letter indices represent coordinates on
the worldvolume and satisfy the (Poincaré)y isometries. To distinguish the two ranges,
we use variables with Latin letter indices to represent the transverse space coordinates,
which follow the SO(D — d) isometries. Accordingly, one can find the metric

ds* = 2 dat dxn,, + 2P0 dy™ dy" 6, (3.11)

where u(v) = 0,1,--- ,d —1 and m(n) = d,---,D — 1. Both functions A(r) and B(r)
depend on r = /y™y™, which is the isotropic radial coordinate. Let us also set the scalar
field to depend only on r. Once we have the ansatz for the metric, we can then try to
derive its corresponding curvature.

3.3 Construction of Curvature

To solve the EoMs in (3.10), we need to find the form of the curvature Ry y. In this
section, we will use the metric ansatz to calculate its corresponding curvature in both

4The full calculations for EoMs can be found in Section A.2.
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worldvolume and transverse space. For a flat space, we can go through the simple path in
general relativity, that is, from g, to the Christoffel symbol and then to the Ricci tensor.
However, our situation is more complicated because we consider not only two ranges,
but also the non-flat metric. We have two different ways to tackle this complex metric.
The first goes from a vielbein to a spin connection, which is equivalent to the curvature
term. The second uses a classic approach to construct the curvature, but with Weyl
transformations. Both methods are useful and provide insights for deeper discussions.
We will therefore derive our results using both methods.

Let us first consider using a vielbein. This is a set of orthogonal metric tensors that
couple the spacetime metric of a curved manifold with a flat Minkowsi metric of a tangent
space:

gMN = BMEGNET]E, (312)

where the capital Latin letter index with underline E(F) is the tangent—space index. By
substituting our ansatz, the vielbein 1-forms can obtain the following:

et = A gy, em = B0 gym. (3.13)

Here we split the tangent—space index £ = (u, m) similarly to the worldvolume spacetime.
In the Cartan formalism [13], the vielbein we defined above can also be regarded as a
spin connection. One can construct the torsion and curvature via these spin connections
[14] as follows:
0L = def + wEp A e,

- 3.14
REE — quwEE 4 WEP A o F. ( )

These are known as Cartan’s structure equations. We can then find the curvature with
given wZE. In our discussion, the simplest manifolds are considered, which means that
the related torsion is zero.

By taking E(F) = p, m, we can obtain three different combinations with indices v,
pn and mn. The substitution® of the vielbein leads to the following expression: B

wﬁy = O7
wh — =By A(r)et, (3.15)
wnt = =BG B(r)e™ — e 819, B(r)e.

Before plugging the 1-form spin connections into the second Cartan structure equation,
it is convenient to raise the index D via 7, to obtain

REE = dwEE + np Bt A wlE (3.16)

Upon obtaining the full expression of the curvature in the tangent space, the next step
is to convert the underlined index to our original index. This can be achieved by

Run = Runeyefy, (3.17)

6A('r

where we have e, = 6*,e2(") and e, = §*,eP) and the remaining combinations vanish.

®More details are presented in Section A.3.

10
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Finally, we can express the Ricci tensor in the spacetime of our supergravity theory

- d+1
R, = — 1,2 AP <A” +dA? +dA' B + LA') ,

T
- 2d + 1
R = — Orim (B” +dA'B +dB? + d—+B’ + C—ZA’> (3.18)
T T
-2 éy (dB" +dA" —2dA'B + dA? — dB"? — 2lB’ — C—ZA’> ,
r T T

where we use the chain rule” to vary the derivative term of the functions A and B. Thus,
the prime denotes the derivative with respect to the radius r. We also have d=D—d— 2,
which represents the dimension of the dual space.

Now, we use a Weyl transformation to construct the curvature. Instead of using the
previous condition, it is more intuitive to start with a general situation. Let us assume g,
is a general Lorentzian metric and ¢;; a general Riemannian metric. These two metrics
are initially flat; in other words, their curvatures are zero before applying the Weyl
transformation. Beginning with a general g,,, we can perform a Weyl transformation
Guw = AN?g,. The corresponding change in the Christoffel symbol is as follows:

~ 1A o/ R R
Pﬁp - _gu (gcrv,p + Gopp — gvp,o)

2

1
- 5Aﬂg;w (8,, (Azgav) 40, (Azgap) _ 9, (Azgvp)) (3.19)
=Ty, + A tghe (0,AGov + NGy — 05 AGuyp) -

For simplicity, we label the extracted part as S},. Hence we can derive the transformed
Riemann tensor as follows:

R ypy = Rty + (V88 + SESS — p s ). (3.20)

p~ov

We can further determine the transformed Ricci tensor for the single-metric case. In
our situation, it is necessary to consider two ranges of indices. Fortunately, we can regard
the two metrics as block diagonal form metrics that only depend on their own coordinates.
In this case, we can use the above transforms. Furthermore, because we have two different
factors in terms of the functions A and B, a single Weyl transformation is insufficient to
obtain the ansatz used in (3.11). Thus, we need to perform a two-step transformation.
First, we set A = e~ which will only influence the transverse space as the initial
value when the worldvolume curvature is zero. Subsequently, we perform the second
transformation with A = e#, which affects the total space. This will remove the A(r)
dependence in transverse space and ensure that the final form of our metric is the same
as (3.11). Finally, we obtain the following Weyl-transformed curvature:

Rup =Ry — 48 (V2445904 (40, A + 05 B) ) o
Rij =Rij — dV;V;A — dV;V;B + dd,Bd; B — dd,Ad; A (3.21)
+ 2d0,Ady B — (%QB 4 590,B (dajA + JajB)) Gii»

6We present these transformations step by step in Section A.4.
"We follow these relations: 9,,4 = A'r~1y™ and 9,,0,, A = A"r=2ymy™ — A'r=3ymy™ + A'r=15,,,,.

11
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where d and d have the same definitions as previously. Here, R,,, and }N%Z-j are the original
curvatures before transformation and their corresponding covariant derivatives are V and
V. As the functions A and B do not have any dependence on worldvolume coordinates,
only derivatives with respect to transverse coordinates are preserved. Considering the
same chain rule as before, one can find an equality between (3.18) and (3.21). Both
methods give the same results.

In this section, we have successfully determined the curvature from our metric ansatz.
However, we have not considered the ansatz for potential because there are different ways
to form a field strength satisfying our assumptions. We will discuss all possible ansatzes
in the next subsection.

3.4 Electric and Magnetic Branes

We have two possible ansatzes, related by duality. Usually, these are termed the “electric”
and “magnetic” ansatzes. In this section, we will discuss them separately. We can then
apply all ansatzes back to the EoMs to find the values of e4 and e”.

3.4.1 Electric Brane Ansatz

Let us consider the first possibility. To find an n-form field strength Fj,), one can start
with an (n — 1)-form gauge potential Ap,_y). This choice is similar to the Maxwell gauge
potential, which always couples to a charged particle, and this is why we call it the electric
ansatz. It can be expressed as

A

R Em'"unqec(r)a (3.22)

which couples to an (n — 2)-dimensional charged object. Our worldvolume dimension can
be shown to be d,; = n — 1. The corresponding field strength is
) = €y OmeC ). (3.23)

mptfn—1

Because C(r) depends only on the radius of the transverse space, the field strength
has one transverse index m and preserves the required symmetries. Now, we have all
ansatzes and are ready to solve (3.10). Plugging the curvature and field strength into the
EoMs, a set of equations can be found, leading to the final solutions for the metric and
scalar field:

. d+1) d
A L d (A 2 dA'B' ( Al = 2
TAA)+ L DR
. 2d + 1) d d
B +dAB +dBy+ 2 Vg Ay 4 g
* +d(B) + T + r 2(D—2) "’
dB" + dA" — 2dA'B' + d (A" — d (B')? (3.24)
d_, d 1,5 1
——B — A+ - (¢) = =5
r r +~2 (¢) 28 ’
~ d+1 1
¢//+dA/¢/+dB/¢/+w¢/: _§QS2'
T
Here, we define S in terms of our gauge potential ansatz:
S = (le2@44+C, (3.25)

12



3.4. ELECTRIC AND MAGNETIC BRANES

Although we have simplified a large part of the EoMs, the results are still complicated.
To further reduce the equations, a linear condition is applied:

dA' +dB' =0, (3.26)

due to the supersymmetry. In [15], a detailed proof is presented for this linear require-
ment. Since we remove the dependence on the function B through the above condition,
a form of isotropic Laplacian is observed in the simplified EoMs:®

Vip = ?qﬁ’ + ¢ (3.27)

When we rewrite the EoMs in Laplacian form, the scalar ¢ and the function A are
surprisingly linked by the defined term S. Brief algebraic manipulation shows that the
first two equations in (3.24) can be combined to remove the dependence on A:
—a(D —2
y D=2, (3.28)
d
At the final stage, we have the last EoM that only depends on ¢. Again, this can be
expressed as a Laplace equation:

A
V26 + (¢)’ = 0= VPek? =0, (3.29)

where A is a new combination of constants and dimensions.” Thus, one can assume the
solution for our scalar field ¢ is also the solution of a Laplace equation:

H(y) = e2?. (3.30)

It is simple to write ¢ in terms of H(y) and therefore as A(r)/B(r). Then, the final
solution based on the electric ansatz can be written as follows:

ds? = H&0) dx"dx"nu, + H 03 dy™dy™,

9 . (3.31)
Ao = ﬁem---uan(y) :
Let us consider the specific form for our H(y). Since it satisfies the Laplace equation, it
must preserve the isotropic symmetry. In that case, the simplest assumption that can be

used is k
Hy)=1+ — (3.32)
r

where we ensure the positivity of the constant k& due to the restriction of singularity at
finite r.

Once we find the general D-dimensional solution, the corresponding expression at
maximal supergravity can be derived by setting D = 11. It is important to restate the
difference between the 11-dimensional case and lower dimensions, which indicate that
there is no scalar field in a maximum supergravity theory. However, our general solution

8Here we have a general expression for the isotropic Laplacian. In our calculation, we replace (D — 1)

with (d —1).
9The expression for A is (gdflz) + a?
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3.4. ELECTRIC AND MAGNETIC BRANES

is the truncated theory that contains scalar fields. To fix this problem, one can set all
coefficients in front of the scalar ¢ to be zero, that is, a = 0. By applying this restriction,
the value of A can be found to be 4 in the D = 11 case. As we started with an electric
ansatz, we can obtain an A gauge field and an Fjy antisymmetric field strength in the
D =11 case. Then, the worldvolume dimension is d = (n—1) = 3 and the corresponding
dual dimension is d = 6. Using (3.32) and (3.31), one can show that the electric ansatz
solution is as follows:

—2/3 1\ /3
ds* = (1 + 7“_6) dx"dz"n,, + <1 + E) dy™dy™,

o !
A;w/\ = €uv (1 =+ E) )

which we also term the membrane solution or the 2-brane solution as p =d —1 = 2 in
this case.

(3.33)

3.4.2 Magnetic Brane Ansatz

As mentioned previously, another possible ansatz exists for the antisymmetric field strength.
One can start with a dualised field strength, which can be related to the original Fj,.
According to the definition of the Hodge dual, we can express this as *F, which is a
(D —n) form. Then, the dualised gauge field has a (D —n —1) form and its worldvolume
dimension can be defined as d = (D —n — 1). To compare different ansatzes, it is con-
venient to write the magnetic ansatz with Fj,) rather than its dual. This field strength
only has a transverse direction [8]:1°
P
Frpm, = )\eml...mnpm. (3.34)
We find that there is a coefficient A, unlike in the electric case. This is called the
magnetic-charge parameter, which will be determined later as all assumptions are applied.

Since we only have a different choice of field strength and the remaining ansatzes stay
the same, it is not surprising that we obtain the same form of solution as before:

9 —ad’ 4d’
ds® = H20-2dxdz"n),, + H3P-2dy™dy™,
2 _A
len-mn = _ﬁemlmmnrarH(y)) H(y) =e 2a¢7

(3.35)
where we label the worldvolume dimension as d’ to distinguish it from the electric case.
We also have a minus sign in front of ¢ in the structure of H(y), which comes from a
different S value! in (3.24). Recalling that we have the specific form of H(y), we can
further derive the relationship between k& and A:

P VA, (3.36)
2d

10The form of the field strength is guaranteed by the Bianchi identity, which is examined in Section
A5,

"Tn the magnetic case, S = A (e%ad”dB) pmd-1,
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3.5. BRANE MOTION

In D = 11 supergravity, we have a 6-dimensional worldvolume, and thus a 5-brane for
the magnetic ansatz. The solution can be written as

—-1/3 k 2/3
ds* = (1 + ﬁ) datdx"n,, + <1 - ﬁ) dy™dy™,

U
rd

(3.37)

Foyoomy = 3K€m, cmup

To summarise, we have applied two different antisymmetric tensor ansatzes to obtain
an electric brane and a magnetic brane. Then, we used the general p-brane solution and
set D = 11 with a vanishing scalar field, which leads to an M2-brane and an Mb-brane.
In other scenarios, additional types of branes are possible; however, these depend on the
total spacetime dimensions. Detailed exploration of these variants is beyond the scope of
this discussion.

3.5 Brane Motion

In the previous subsection, we discussed a p-brane ansatz that considers a single-charge
system. Now, we discuss multi-charge situations. One physical approach to multi-charge
solutions is known as brane coupling. Specifically, we can put a light brane as a probe
into a background with a heavy brane. By using a suitable probe action, we can then
investigate the motion of our probe under certain background conditions.

Generally, one can start with a p-brane probe with a supergravity background, and
can express the probe action as [8], [16]

=

[Probe = _Ta/dp+1€ (_ det (auxmaul'ngmn(x))) eégprdalg—i_Qa/A[O;Jrl]' (338)

Here, ¢P* = 41 and fl[‘}g 4y 18 the gauge potential:

A([lp—i-l] _ [(p + 1)!]_18/“.%”“ .. aup+1$mp+1Aa dEFE A - A dEPr (3.39)

M1 Mpt1

In our discussion, we choose the relatively simple case of a D = 11 membrane coupling
to a heavy membrane background. In that case, we have d, - ¢ = 0, and let &* be z*.
Then, the general probe action (3.38) becomes

Lrobe = —T/d?’:p (\/— det (e24W)1),,, 00200920 + €2BW O,y y™) — m@oxoec(y)) ,
(3.40)

where we can relabel dyx° as £. To solve this action, we need to deal with the square root
term first. A simple expansion is not an ideal solution, so we introduce a method to add
a new variable called an einbein.

3.5.1 Einbeins

Let us consider an example to show how einbeins work and that is independent of our
final results. Considering a particle moving from A to B, its corresponding action can be
written as follows:
AB
Ia*N)] = —m [ d\[—gu(z(\)iri"]"?, (3.41)
A
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3.5. BRANE MOTION

where we have a square root term. Now, we introduce an einbein e:

AB
Iz"(\),e(N)] = % /A X [e 7 g ati” — m?e] (3.42)

which helps us to eliminate the square root term. However, we cannot arbitrarily add new
variables into our EoM without affecting the invariance of the system. In other words,
one needs to prove that I and I will give the same EoMs. Therefore, variations with
respect to * and e must be zero, which gives us the following expression for e:

1 g e11/2
€= E [_guu(x<)‘))x#x ] / ) (343)
where we can substitute e back, leading to [ =1I. In that case, the equivalence between
I and I has been demonstrated, which means that the einbein can be used to remove
square root terms.

3.5.2 Brane Orbit

Using einbeins, as introduced in the previous subsection, we can expand (3.40) as

1 . .
Iprobe — /dt{[_(_GGAtQ + 62(B+2A)ymym) . ae] o mtec},
) ‘ (3.44)
e = _(e6ALi2 _ 62(B+2A)g-/mym>%’
m
where we express the determinant with 9;5™ = 0. Then, we can derive the energy and

angular momentum from (3.44) as follows:

oL 1 .
=——= |- (266At) + me®4 ,
ot e
or ) (3.45)
J = — =234r29-.
19l0) e
Here the isotropic property §™g™ = 72 +12¢? is used. Relabelling e as 2L we can combine
the two equations in (3.45)'%:
L2 J2
i = —2€ng <8266A — 2ee 34 — —2€3A> : (3.46)
m r

This is the equation for the isotropic radius of the probe brane, which is also known as
the orbit of brane. Based on this equation, we can understand how the probe moves in
the heavy brane background.

In this chapter, we investigated supergravity at D = 11 by determining its EoMs and
conserved supercharges. We then applied a consistent truncation that links our theory
with a scalar field. Based on the truncated action, we derived the Brane solution for
electric and magnetic ansatzes. Finally, a multi-charge brane system was discussed that
helps us to understand the motion of the probe brane.

12The detail derivations are in Section A.6
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Chapter 4

Dimensional Reduction

In this chapter, we will explore the method of dimensional reduction. The genesis of
this concept began with the proposition to extend our conventional four-dimensional
(4D) spacetime into a five-dimensional (5D) framework, a theory initially put forth by
Theodor Kaluza [17]. Oskar Klein [18] further developed this theory by suggesting that
a fifth dimension could be conceptualised as a compactified circle, introducing what is
now regarded as the quantum explanation of the extra dimension. This collection of
ideas culminated in the well-known Kaluza-Klein theory. Concurrently, the technique
of dimensional reduction emerged. Employing this method, we commence with a D-
dimensional case. By compactifying on a circle, it becomes possible to perform a reduction
from D+ 1 to D dimensions. This process can be iteratively applied to achieve a general
reduction from D + n to D dimensions.

After reviewing the fundamental methodology of dimensional reduction, we will delve
into its corresponding symmetries, which will provide a better understanding of the scalar
manifold in our theory.

4.1 Dimensional Reduction on S*

It is convenient to start with a general dimension D+1. Considering the high-dimensional
action (3.2) discussed in Chapter 3, we can split our theory into two parts: gravity and
fields. Since all components depend on dimensions, we shall discuss them separately.
First, we need to consider the Ricci scalar, which is part of the gravity term. This can
be calculated from the given metric term g*”. In Klein’s compactification idea, we reduce
our dimension from D + 1 to D with one dimension on a circle S'. Before performing
the detailed reduction, let us define some notation. Here, we use the capital letter M (N)
to represent the total D + 1 index, the compactified dimension coordinate is written as
z, and the rest of the coordinates as x. We express our (D + 1)-dimensional metric as
G- Continuing with the Kaluza—Klein reduction, we assume that the compact circle
is so small that one can remove the z dependence on the original metric. Now, our aim
is to find the reduced D-dimensional metric from Gj;n. One way to achieve this involves
decomposing the metric index into two ranges, allowing us to expand G,y as

Gn G
Gun = A 4.1
wv= (G &) 1)
where the components can be relabelled to satisfy D-dimensional spacetime. Naively, one
can match different components directly to lower-dimensional metrics; that is, we can let
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4.1. DIMENSIONAL REDUCTION ON S!

G, be g, For G, and G, we can also label them as 4, and ¢, respectively. However,
these transformations cannot reveal the corresponding symmetry. A mixture of these
compositions would be a better option [17]. Here, we rewrite the (D + 1)-dimensional

metric as
dS? = e*?ds® + e*(dz + A, da")?, (4.2)

where we define the relationship between the (D + 1)- and D-dimensional metrics as

follows:
G = 62a¢guy + 626¢AHAZ,,

G = 625¢AM, (4.3)
G, = e*h?.
We have already mentioned two methods to find the corresponding curvature. Here

we use the spin connection method. Depending on the choice of metric, we can find our

vielbein as follows:
B = e, EB* =€ ?(dz + Audat). (4.4)

For clarity, we use E and e to represent the (D + 1)- and D-dimensional vielbeins,
respectively. Then, we can derive the (D + 1) spin connection via (3.14) as follows:
d(E*) + Q. N E* =0,
= BO,pdx” N E* + €PPdA, N da" + Qg AN E* =0,

1
= e *B0,0E" N E* + eﬁ‘i’*?“‘f’éfab E“NE"+ Q% A E* =0, (4.5)
1
= O, =e *B0,0E" + 565¢—2a¢fab E®.

Again, we distinguish our spin connections by writing 2 and w for (D + 1) and D dimen-
sions. We also define a field strength F,;,, which is the exterior derivative of the gauge
field A,,. Then, we can obtain another spin connection:

dE* + Q% AN EP + Q% AN E* =0,
= e PGB A B —wy A B+ QU A EY — Q0 A B =0, (4.6)

1
= Q% =w"%+ ae‘a¢8b¢E“ - §€6¢_2a¢./—"abEz.

From the derived 1-form spin connections, we can find the corresponding 2-form ex-
pressions R, and R.. in terms of D-dimensional components:

1
Rap = €2 (Rap — o*(D — 1)(D — 2)0,00p$ — aney3e) — 562(5*2@%;@6,
4.7)

1 (
R.. = (D —2)ae >*°0¢p + 162(5_2a)¢FabF“b,

where we can choose different values for o and 5. The unfixed constants are restricted by
the requirement of canonical normalisation. With this reduction, we gain a scalar field
¢, which leads to a kinetic term in our final action. Thus, we need to set

9 1

“TaD-nD -2 (48)
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4.1. DIMENSIONAL REDUCTION ON S!

where we can find a —%(%gb@bqﬁ term in (4.7). Together with the reduced metric deter-
minant \/—¢g, we can then investigate the reduced gravity component with respect to a
lower dimension:

V=GR = PHD=20e /7y (R — %(3@2 — iew?’awamb) : (4.9)

To keep the \/—¢gR form unchanged, we apply another constraint on o and :
g =—(D-2)a. (4.10)

To summarise, we can rewrite the above gravity term using the forms introduced in
Chapter 2:

1 1
I= /R w15 xdpnde - §e*2<D*1>a¢ * Fo) A\ Fa)- (4.11)

Now, let us consider the reduction for the gauge field and the antisymmetric field
strength. In (D + 1) dimensions, we have a field strength F’[n] that can be expressed
as F[n] = dfl[n_l], where fl[n_l] is the gauge potential. After compactification, we expect
that there are two different potentials Ay,_1) and Ap,_y in D dimensions that depend only
on X. Thus, we can express the field strength in terms of the reduced gauge potential as

[19]

ﬁ’[n] = dA[n_l} + A[n_g] Ndz. (4.12)

To maintain consistency with our metric reduction, we will introduce a new way to

define the reduced field strength rather than the exterior derivative of the reduced gauged

potential. This new choice links Apj, defined in the metric, to our field strength (4.12)
[19] as follows:

F[n] = dA[n_l} — dA[n_z} A A[l] + dA(n_g) A\ (dz + Am) ,

(4.13)
= F[n] + F[n—l] A (dz + A[l}) )
where the reduced field strength is defined as
F[n] = dA[n_l] — dA[n_g] A\ .A[l], F[”—H = dA[n_Q]. (4.14)

The consistent choice of reduced field strength allows us to expand the (D+1)-dimensional
field strength with respect to the vielbein basis:

A 1 -~
F[n] — EFAl...AnEAl FANIRIVAN EAn,
enad e((n=D)a+B)e
_ ai an al an—1
= —Fua, @ AN WFal...amze A Netm P A (dz + Apy)

1 1
—— ai .. an
- Fopoq €™ A Aem + o 1>!Fa1...an71

e A Aetm A (dz + Ap) -

(4.15)
The capital letter A represents the total range of indices including a and z. After re-
labelling, we can find the relationship between the higher- and lower-dimensional field
strengths:

A A

Foyan = einad)Far--ana Foyan 1z = e(Dinil)ad)Far--an—l' (4.16)
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4.2. DIMENSIONAL REDUCTION ONT™

We then consider the complete form for an antisymmetric field strength in our discussion.
Again, we use forms to express the field part:

1 1
I=— / 56*2@*”@ s By A Fiy + §e2<D*">a¢ * Flp1) A Flp_1). (4.17)

An appropriate way to examine our reduction is to apply it to a real situation. Turning
back to supergravity theory, we can start our S! compactification on the bosonic sector
of 11-dimensional supergravity (3.2). Thus, we can reduce the 11-dimensional theory to
10 dimensions as follows:

1 1
I :/ (R*l—é*F[4]/\F[4}) +6/dA[3]/\dA[3]/\A[3],
1 1 34
1 14 1 —o 1
— 562 *F[4]/\F[4]—|-§6 *F[g,}/\F[g} +§ dA[g}/\dA[g]/\A[Q],

where we write the previous 11-dimensional action in terms of forms. We also reduce
the Chern—Simons term, which follows the field reduction relation only. As expected, the
result after reduction shows the low-energy limit of the type ITA string theory. Although
a lengthy calculation is required to determine all the reduction relations, the final results
are straightforward and consistent with supergravity theory. At the end of this section,
we derive the 10-dimensional theory. However, much work is required to obtain even
lower-dimensional results. Naively, we can perform S! compactification repeatedly until
we reach the target dimension. A generalised method to reduce multiple dimensions will
be discussed in the next subsection.

4.2 Dimensional Reduction on 7"

In the previous discussion, we performed a compactification on an S! manifold, which
reduced its dimensions by one. To repeat this process and obtain a general solution
for n-dimensional reduction, we need to consider what kind of manifold to compactify.
By continuously compactifying an S' manifold, we can obtain a combined manifold as
St x ... x St Topologically, we define this manifold as a torus 7™. Thus, a reduction
from (D + n) to D dimensions is achieved by compactifying n extra dimensions on a 7"
manifold.

Now, we can build on the previous discussion. In each reduction, we need to introduce
a potential and a scalar term from the gravity component. For example, fl] and ¢
appear when we reduce our metric at step 7. For the same reason, a p-form field and a
(p — 1)-form field are generated by reducing a p-form antisymmetric field. To illustrate
these successive reductions, we shall use our D = 11 example again. Because we started
from a maximal dimension, we can reduce from 11 to any positive dimension D on an
(11 — D)-torus. Due to the growing number of potentials, scalars and field strengths, we
define a new label i(jk) to represent the reduction process, which helps distinguish each
component such that we can easily trace their descendants. For example, we can rewrite
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4.2. DIMENSIONAL REDUCTION ONT™

the above D = 10 action as follows:

1 1
. 1 (4.19)
_ (§¢e_z¢1 * F[4} VAN ﬂ4] + §e¢1 * F[g] A F[é]) + /[,05,

where we have ¢ = 1 as we apply a 1-step reduction from 11 dimensions. To avoid
redundancy, we will express the Lagrangian £ in later discussions. The reduction of the
Chern—Simons term Lcg will also be discussed at the end of this section.

Let us now return to the main Lagrangian reduction. A good way to generalise a
theory is to start with some examples and compare them step by step. In that case, we
can further reduce to D = 9. To see how our fields proliferate, we can focus on the change
in coefficients in front of *F},; A F},;. We have collected these in Table 4.1 for comparison.

D=11|D=10] D=9
*Flg A Flyg | 1 e-30r | emi0rema%
*Hg A g | O e O R
*Fo) A\ Fgp | O 0 ot

Table 4.1: The coefficients of the field terms for D =9, 10 and 11.

In Table 4.1, we ignore the factor % because it is the same for all fields. We can also find
that the number of 4-form terms does not increase. Instead, its coefficient is multiplied
by an extra scalar term for each reduction. Other forms will have an additional term from
higher-order forms. Usually, we call these scalar terms dilatons, and the corresponding
values in front of ¢ are known as dilaton vectors. Let us first consider the 4-form dilaton
vector. We can rewrite the coefficient term as a vector product a - (E, where @ is dilaton

vector:
dp = (aDH,—z(n—1)\/2@_&@_2)), (4.20)

which is derived from the previous field reduction relation (4.17). We also combine the
scalars as (E = (¢1, ¢, -+ ). The remaining field coefficients change according to a similar
logic. Furthermore, the Kaluza—Klein potential also contributes to the field strength. To
summarise all possible descendants of the field strength combination, we generalise a set
of representations for dilaton vectors that depend on the value i, as shown in Table 4.2.

Hy ilt)
4-form a=—g N/A
3-form G=f—g N/A
2-fOI'II1 6Zj:ﬁ+ﬁ_§ gzz—:
Iform | Gyr = fi+ fi+fi—G by =fit ]

Table 4.2: Dilaton vectors for different forms [19].

We define g and ﬁ to ensure that we are able to unify the complex expressions for
different forms. Recall that we derived the dilaton vector for 4-forms in (4.20), which can
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4.2. DIMENSIONAL REDUCTION ONT™

be related to our new expression:

1
s =2 \/2(10—2’)(9—2’)’

g’: 3 X (Sl,SQ, s 7511—D)7 (421)
f:: (0,0,0,(10— 1)Si,8i+1,...,811_[)),
i—1

where D is the target dimension. Using the fully defined vectors, let us now return to
Table 4.2. The lower forms are found to be generated only from the higher forms at
the start. In that case, the index i(jk) in the lower forms expresses the need to satisfy
1 < j < k. For the empty value of F, this is because one can only get 2-forms from the
reduction of gravity terms. Then, the reduced Lagrangian can be expressed as [19]

ad 1 @b i i
e ¢*F[4]/\F[4] ——Ze 1¢*F[3]/\F[3}

]_ — —
= 1—=xdpANdop—
L=Rx 2* o N do 5

N | —

i

I 55 o 1
az]¢ K - bi-¢ T o qﬁ Zk ijk
_‘Z FFYAFY =5 ) e Fiy AFly — 5 > e FF AR (4.99)

1<j i 1<j<k
1 R .
=3 2R T AT+ Los.
1<j

All the field strength combination reductions are summarised in the above equations.
We also have a clear picture of a reduced Lagrangian. It is therefore time to discuss the
metric reduction. Again, we will perform reductions on an 11-dimensional metric first:

ds?, =es?ds?) + e 3% (d=' + Al)Z :
1 Nid
= ds}, :e%‘z’lmﬁmdsg 1 esdie 2 (d2* + .,42)2 (4.23)
Femi (d2t + AL AR A d22)
where dz’ is the reduced dimension. We also choose A® as the first-order gauge potential
and the reduced zeroth-order gauge potential as A“. We can use the dilaton vector to

express our metric. Considering a successive reduction from 11 to D dimensions, we can
write our 11-dimensional metric as

—

dsi, =e 309 SD—G-ZG% ~fe dz + A+ Aij/\dzj)Q, (4.24)

where we can relabel some terms to simplify the expression:

1. 1=
T= A (4.25)

67
hi = (dzi+Ai+Aij /\dzj) )

Next, we discuss the reduction of the field strength itself rather than its combination in
the Lagrangian. We consider the gauge potential reduction as before and apply an exterior
derivative. Let us start with a 3-form potential A and reduce it to D dimensions:

A . . 1 . ) )
A = Apg + Al A dz' — 5,4;” Adz' AdZ — —A”’“ Adzt AdZ A d2", (4.26)
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4.2. DIMENSIONAL REDUCTION ONT™

where the minus sign comes from reordering the i(jk) labels. Then, we can apply the
exterior derivative. The form of the reduced field strength is defined as above. To link
the current form to our metric, we will not represent F, as dA,_;. Instead, we will use
a large number of terms to express our results as

i 1 i i 1 ijk i k
Fy = Fu+ Fy ANh' — F[g]/\h /\hﬂ—EF[f AR AR ARE (4.27)

with a set of reduced field strengths, which is calculated in [19]:
. o R 1 ., . .
Fy=F, —~VFi N A — 572’“7]@1?2” ANARA AL+ év’ffyﬂmyk"Ffﬂ“ ANASA AN AT
. o o 1
Fg _ ,y]zF?z . ,yjz,ykKFéjk A Ali _ E,yjz,ykm,yanjkf A ./4.71” A A?,

ng — fyki,yéjﬁvké . fyki,yéjfymnﬁvlkém A A?7

Flijk _ ,yfz,ym],ynkﬁvlémn’
Fy=Fy—7FF A AL
fl] _ kjf’tk

(4.28)
Using these expressions, we define F,, = dA,,_1. The new variable v¥ comes from (4.25),
and we can express dz’ in terms of A’ and the potential:

a2 = [(1+ Ao) T — A, (4.29)
We can also define
v = [(14 Ag) ™7 =67 — AT + ATAY - (4.30)

Finally, we discuss the reduction of the Chern—Simons term, for which a general
expression cannot be found. Instead, we must perform the derivation step by step. Since
we have all the expressions for the reduced field, we can substitute them back with
repeated calculations. Here, we show only a derivation for reduction from D = 11 to
D = 9.! Reduction from 11 to 10 dimensions was discussed in the previous section,
allowing us to start with the following expression:

1 i i
[%vls = 5 (dA[g] N dA[g] VAN A[z]) ANdz

_ 1 o o (4.31)
=5 <F[4} A F4] A A” + 2F g A Figy A F[]g] A A[3]> ANdz Adz".
This can be further simplified by introducing
€7 =2d2" N d, (4.32)

which ensures the clarity of the expression at lower-dimensional terms. Until now, we have
discussed the generalised torus compactification. If we want to perform a dimensional
reduction on supergravity theory, we simply choose the target dimension and follow the
results in this section. This saves a great deal of time when we research specific dimen-
sions. In the discussion about reduced components of the Lagrangian, we did not mention
another important part of our theory, which is its symmetry. In the next subsection, we
will talk about the symmetry involved during dimensional reduction.

!The full reduced terms from 10 to 2 dimensions are presented in the Section B.1.
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4.3 Symmetries in Dimensional Reduction

To understand a theory, it is not enough to calculate the expressions without examining
the underlying symmetries. Especially in dimensional reduction, the scalars or dilatons
will increase at each reduction. At the same time, we will encounter 0-form gauge po-
tentials, called “axions”, which can also be scalar terms. To solve these scalar terms in
the Lagrangian, it is important to identify their symmetries. In this subsection, we will
first investigate the simple S! compactification symmetries. Then, torus reduction will
be discussed, which links to the concept of scalar coset Lagrangians.

4.3.1 S!' Reduction Symmetry

Let us turn back to the start of dimensional reduction. We investigate the simplest S*
reduction symmetry first. Considering higher- and lower-dimensional theories separately,
they must be covariant for their own coordinates. Then, we can link these theories
together via our reduced metric ansatz, which leads to the fact that the symmetries of
lower dimensions are composed of higher ones [7]. Specifically, the reduced D-dimensional
theory will have a local gauge symmetry and a shift symmetry in addition to the general
coordinate symmetry.

We shall start carefully with a general coordinate transformation from a (D + 1)-
dimensional theory [20]:

XM = -EM 6Gyn = E"0pGun + GpnOnEY + GrpOnE". (4.33)

Since the (D + 1)-dimensional theory has general coordinate symmetry, its metric must
satisfy the above infinitesimal transform via =M, which are functions of the total coordi-
nates X™. We can then apply the reduction method to these transformations. To follow
the metric ansatz introduced above, the simplest forms we can take are

(1l

F=¢H(x), ZF=cz+ A(z), (4.34)

where we express the transformations into two ranges with D dimension indices p and
an extra dimension index z. The corresponding functions £#(z) are the ansatz for D
dimensions. By choosing a different index for M(N) and substituting? the results back
into (4.1), we obtain the following results:

5¢ = §p6p¢a
5 A = E0p A + A" + DN, (4.35)
5g/w = gpapg/w + gpz/aufp + gupau£p>

where we set ¢ = 0. The first equation illustrates that ¢ follows the local coordinate
symmetry as a scalar. It is also invariant under a U(1) transformation with respect
to A. For the second equation, we find that A,,, satisfies both the general coordinate
transformation and the U(1) transform. The last equation shows that the metric term
transforms appropriately in both symmetries. Thus, we have shown that the reduced
D-dimensional theory preserves the local symmetries.

On the other hand, it is necessary to discuss the non-vanishing constant situation
in which we set ¢ in =% non-zero. This leads to another important symmetry in our

2The detailed calculations are presented in Section B.2.
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4.3. SYMMETRIES IN DIMENSIONAL REDUCTION

dimensional reduction, which is termed dilaton shift symmetry. It can be achieved by a
shift transformation on ¢ with a suitable scaling transformation [7] on A,:

¢—p+e, A, —ePTHoY, (4.36)

To justify this symmetry, we require more information about our higher-dimensional
theory. In the (D + 1)-dimensional Lagrangian, we can easily find an EoM? that has an
additional global symmetry:

GMN — /{ZZGMN, (437)

which keeps the EoM unchanged. Therefore, one can apply this global symmetry, which
is independent of the general coordinate z, and obtain the following corresponding in-

finitesimal form:
5GMN = C(Si/[GzN + C(SJZVGMZ + QCLGMN. (438)

Applying the same process as was used for the local symmetry, we can substitute the
metric back into our ansatz, which gives the following results:*

Bop=a+c, O0A,=—cA, 9 =2a9,, — 20g,,00. (4.39)

Notably, our lower-dimensional metric is also invariant under such a scaling transform.
Thus, we need to maintain dg,, at zero via a suitable relation between the constants.
While relabelling these constants,® one can easily show that the shift symmetry in (4.36)
is satisfied.

4.3.2 T? Reduction Symmetry

In the previous subsection, we discussed S' reduction, which contains only one dilaton.
However, a general case always has two types of scalar, namely dilatons and axions. To
examine this multi-scalar case, we need to consider more than one step of reduction,
which gives an axion. Thus, a 72 compactification is a good example to investigate.

Beginning with the gravity term of our theory, we can find the Lagrangian expression
and reduced metric term via (4.22) and (4.24). Unlike the 1-step reduction, we now
have an A'? term, which has a O-form potential and can be represented as y. With
some relabelling and substitutions, we obtain the most appropriate expression of the
Lagrangian for our discussion as follows:

1 1 1 1 _ 1
L= R*l—ﬁ*dg&/\d@—§*d¢/\d¢—§€¢+q¢*f(12)AF(12)—§€ ¢+qw*./—'-(22)/\f(22)—§€2¢*dX/\dX,
(4.40)
where we have ¢ = /D /(D — 2). Its corresponding metric is as follows:

2
dst, o = e’mwds% + eV (P=2)/Dy <e¢ (dzy + A" + Xd22)2 +e? (dzo + A2)2) .
(4.41)
From the structure of this metric, we find that the original (D + 2) metric is split
into a D-dimensional metric and a torus metric. These three different scalar terms have
various properties based on their positions in the metric. ¢ appears as an overall factor

3By varying the metric term, one can obtain Ry;n — %RGMN = 0.
4All the substitutions are shown in Section B.2.
®One can find the relation a = —c/(D — 1).
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4.3. SYMMETRIES IN DIMENSIONAL REDUCTION

in front of the torus metric, which can influence the volume of the final torus. This factor
can be easily isolated, which makes it a common scalar term as discussed above. Thus,
we will have a shift symmetry on . Next, we need to consider the remaining scalars
¢ and y, which determine the shape of the compactified torus. By varying ¢, one can
change the radii of the two circles. The other value x determines their relative angles.
The related Lagrangian for the dilaton and axion is

_07‘-8?

2 b
275

1 1
Lipx) = —5(08)* = 5€*(0x)* = (4.42)

We can combine these terms via a complex field 7 = x 4 ie~?, where 7 is the imaginary
part of the field. This newly defined field helps us to evaluate the underlying symmetry
and can be shown by applying a fractional linear transformation:

ar +b
et +d’

(4.43)

We then restrict our constants with ad — bc = 1 such that the Lagrangian is unchanged.
A similar operation is used in [21] to show 77 symmetry. We can then rewrite this as the

following matrix:
a b
A—(C d)’ (4.44)
which forms an SL(2,R) group.

Thus, we have an SL(2,R) symmetry for the dilaton—axion system, which has non-
linear symmetry. Together with the shift symmetry, which is known as R, we have a
full GL(2,R) symmetry for the gravity part of the theory. Now, we need to ensure that
the same symmetry can be observed for the field part of the theory. Before transforming
the field term, we can define a new A! as A' + A%, Comparing with the original F*
expression via (4.28), we find that

Fl=dA' —dy NA*> — F' = dA" + xd A%, (4.45)

Consequently, the field components now all depend on the derivatives of the potential.
Thus, we can only check the transformation on gauge potentials, which is straightforward:

(%)= (%) (4.46

and maintains the Lagrangian invariant as expected. Furthermore, we can show that the
transformation here is linear, unlike the dilaton—axion symmetry. Extending our current
discussion to a T" case, we can naively deduce that there is a global GL(n,R) symmetry.
In real situations, this is not always true. Detailed discussions for each dimension are
presented in [20]. To characterise the global symmetry, we need to further examine the
scalar Lagrangian. Usually, the global symmetry of a reduced dimensional theory can
be confirmed by checking only its corresponding scalar Lagrangian. Thus, we shall go
through the scalar part again but with a generalised method in the next subsection. This
will lead us to the concept of the coset space of a scalar Lagrangian.
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4.3. SYMMETRIES IN DIMENSIONAL REDUCTION

4.3.3 Global Symmetries as Scalar Cosets

We can now start from the SL(2,R) symmetry group. We can further investigate its Lie
algebra [20] with its related generators:

[H,E)=2E, [H F|=-2F, |[E F]=H. (4.47)

We can express these as 2 x 2 matrices:

e (D0) e (1) ee(00)

To link this symmetry to our Lagrangian, we can begin by defining [22]
V=e?HeXB A= VYTY, (4.49)

where ¢ and y are the scalar fields from the previous subsection. Using these definitions,
we can rewrite the scalar Lagrangian as follows:

L itr (OM1OM) = —%(8@2 _ %e%(ax)?, (4.50)

which will directly reveal the invariance when we apply the transformation. Again, we
can use the A matrix defined above, which allows our matrices to be transformed as
follows:

Y — VA,

M — ATMA,

The corresponding scalar Lagrangian is invariant since we take a trace of the matrix
M. However, one can show that the actual transformation is forbidden as it breaks the
original form of V. At the same time, we can regard the matrix V as the representation
of the dilaton and axion. In the previous subsection, we transformed them based on a
defined complex field 7. Here, we can define a local transformation O that keeps the
form of V while it interacts with SL(2,R) symmetries. After this modification, we can
transform our matrix as follows:

(4.51)

YV — OVA, (4.52)

which requires O to be orthogonal for the Lagrangian to maintain its invariance. This
gives a local O(2) symmetry at the end.

To summarise the above discussion, the global symmetry links all the values of ¢ and
X together on a scalar manifold. Simultaneously, an O(2) transformation is applied as a
correction to keep the form unchanged. In this case, we form a coset space SL(2,R)/O(2),
which can be regarded as the manifold of the dilaton—axion scalar system. As we further
reduce the dimension, we will encounter more scalars, which lead to different global
symmetries and correction transformations for each dimension. These are summarised in
Table 4.3.

In this chapter, we have discussed the means by which we can obtain a type IIA string
theory in the framework of supergravity, which can be regarded as a S! compactifica-
tion. We then expanded this idea to obtain a general torus reduction. After finding the
reduced forms of both the gravity and field terms in the Lagrangian, their symmetries
were investigated. Finally, we summarised the scalar Lagrangian symmetry that makes
all scalars on a coset space determined by the global symmetry and a suitable correction.
However, there are still many important topics in dimensional reduction that we have

not covered. One might compactify our theory in manifolds other than 7™, for example
S™ (23], [24] or a Calabi—Yau manifold [25].
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G K
D =8| SL(3,R) x SL(2,R) | SO(3) x SO(2)
D=7 SL(5,R) SO(5)
D=6 0(5,5) 005) x 0(5)
D=5 E6(+6) USp(S)
D=1 Erir) SU(8)
D=3 Ex(ys) SO(16)

Table 4.3: Coset space for D dimensions [22]
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Chapter 5

T-Duality

T-duality is a special duality between two string theories and was first introduced in [26].
Subsequently, in the mid-1990s, this duality was extended into superstring theory, which
helped to link the type ITA and type IIB string theories together [27], [28]. It now acts as a
cornerstone of M-theory. To understand T-duality, one can imagine a propagating string
on a circle with radius R, which is equal to one with radius 1/R. Moreover, we can relate
two physical quantities in different theories with a suitable T-duality transformation. The
most famous example is that momentum can be regarded as a dual representation of the
winding number in another theory. In the simplest case, the winding number can be
defined as the number of turns required for a string to be wrapped around a cylinder. In
the following, we aim to find a T-duality between the type ITA and type IIB supergravity
theories.

In the previous chapter, we successfully derived type IIA supergravity from the D = 11
theory. However, one cannot repeat this process for the type IIB theory. This is mainly
because the chiral properties of the type IIB theory requires a self-duality condition.
Additionally, chirality acts as a barrier between two theories, making it impossible to
apply T-duality at D = 10. To find a suitable expression, we can write something that is
similar to type ITA but obeys the self-duality condition. In [29], a different scaling factor
is used for dimension reduction on S!. Although our earlier method can help us to obtain
the reduction quickly, it is necessary to compare the two theories, which requires a clear
way to illustrate each term in the actions. Using this new scaling, we can find that both
the type IIA and IIB theories have the same sector, namely the Neveu-Schwarz (NS)
sector:

1
Sst/eQ“’(R*1+4*dsoAd90—§*H[31AH[31)» (5.1)

where ¢ is the scaled scalar and H[s represents the field strength. The next component
is the Ramond (R) sector, which contains several antisymmetric field strength terms that
are different for each theory. Then, we need to introduce two sets of Chern—Simons (CS)
terms to complete the actions. Here, we have R sector expressions of the action as follows:

1 ~ ~
S]I%IA = —5/ (*F[Q] A F[Q] + *F[4] A F[4}> )
IIB 1 a 2 L )
S =3 *Fm/\F[l]+*F[3]AF[3]+§*F[5}/\F[5] ’

where Fj) is a self-dual form in D = 10, F[n} is the field strength defined by dAp,—_y), and
Fp) is the modified field strength, which is similar to the relation (4.28).
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Now, let us consider the simplest case for the type IIB theory. First, the identical NS
sectors lead to the same expression for type IIA and type IIB after dimensional reduction.
For the R sector, one can set the 5-form to zero since it satisfies the self-duality condition;
a similar idea is discussed in [28]. In this case, the action in the R sector leaves 1-form
and 3-form field strengths. Following the reduction rule (4.17), we obtain a 3-form term
and a 2-form term from the reduction of Fj3). Note that we do not obtain the reduced
I3 1] as it is formed from a O-form potential. Recalling that we have already discussed the
reduced type ITA theory in the 7% compactification case, the results include 1- to 4-form
field strengths. Thus, if it is necessary for all the terms in type ITA and IIB to match,
the 4-forms after reduction must vanish [28].

Therefore, we have shown that the reduced type ITA and IIB theories in D = 9 are
actually the same theory. Furthermore, two 2-forms in type ITA and type IIB are con-
nected via a global symmetry, which demonstrates the existence of T-duality between the
two theories. In other words, we can generate two different 10-dimensional supergravity
theories from one theory in D = 9. In [27], this dimension-raising process is termed
“decompactification”. Geometrically, we can restate our example of T-duality as two
theories that are compactified on an S* manifold from D = 10. Thus, the radii defined
via dimensional reductions need to satisfy [30]

Rira = d' /Ry, (5.3)

where the labels denote the different theories.

In this chapter, we considered the T-duality between the type ITA and type IIB
theories in nine dimensions, which links two different superstring theories together. With
this implication of T-duality, we gained a deeper understanding of string theory and
supergravity. Furthermore, the link between these types of superstring theory gives us
M-theory and enables us to consider the underlying nature of duality.
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Chapter 6

Conclusion

In this dissertation, we have extensively explored the theory of supergravity. Initially, we
introduced the basic definitions for form representations and related operations, providing
a clear framework for expressing our calculations and results in the subsequent sections.
Following this foundational setup, we focused on a “brane”, which is a commonly used
dynamic object in supergravity. Starting with a consistent truncation from maximal
supergravity at D = 11, we derived an action for branes in general D dimensions. Con-
sequently, we discovered brane solutions based on the EoMs derived from the variation
of the action. During this process, methods such as the vielbein approach and Weyl
transformations were employed to construct the curvature. These methods are pivotal in
theoretical physics.

We then set D = 11 to identify specific brane solutions in maximal supergravity,
leading to the discovery of M2-branes and Mb5-branes. Concluding the discussion of
individual branes, Chapter 3 considered a multi-brane scenario, providing a systematic
approach to analysing the trajectories of moving branes.

Following the discussion of brane solutions, we revisited the truncation theory, com-
monly known as dimensional reduction. Through a detailed examination of this method,
we successfully derived the Lagrangian term for type IIA supergravity in D = 10. Ex-
tending this concept, we achieved continuous reduction with 7™ compactification. It
is noteworthy that scalars tend to accumulate during dimensional reduction. Conse-
quently, we focused on scalar symmetries after identifying all the reduced forms of the
Lagrangian. Typically, such scalar symmetries are applicable to the entire system. By
examining these symmetries in our previous discussions, we identified a coset space that
describes the manifold for all scalars. Each reduction introduces a distinct coset space,
enhancing our understanding of the scalar Lagrangian in supergravity.

Towards the end of this dissertation, we delved into another critical aspect of super-
gravity, T-duality, particularly that between type ITA and IIB supergravity. Initially, we
introduced the type IIB theory, characterised by a specific self-duality condition, which
precludes its derivation from maximal supergravity. We also discovered that T-duality
cannot be directly applied at D = 10 due to the chirality of the type IIB theory. To
circumvent this problem, we again employed dimensional reduction, equalising the two
theories in D = 9. This reduction process gives rise to a global symmetry, known as T-
duality. Serving as a pivotal bridge linking the two theories, T-duality plays an integral
role in our understanding of M-theory.

Although this dissertation has presented a wide-ranging discussion from brane so-
lutions to T-duality, it is important to acknowledge that our exploration covers only a
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portion of the vast landscape of string theory and supergravity. There remains a substan-
tial portion of the theory that has not been discussed, presenting ample opportunity for
further investigation. One possible extension is to continue our examination of branes.
Since we have only discussed the maximal supergravity condition, there are still many
other types of branes in different dimensions left to explore. In particular, a D-brane,
which satisfies the Dirichlet boundary condition, can be used in string theory and its
implications include a new duality termed Ads/CFT [31]. This correspondence offers
a powerful framework for relating gravitational theories in anti-de Sitter spaces to con-
formal field theories with one less dimension, which could provide deeper insights into
quantum gravity. Additionally, mirror symmetry [32], as another interesting duality, mer-
its further exploration. This could be an extension for our compactification chapter as
one can reduce the dimension of a Calabi-Yau manifold leading to mirror symmetry. In
particular, two completely different Calabi—Yau manifolds can be linked to each other
through this symmetry.
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Appendix A

Brane Solution and Related
Calculations

A.1 Derivation of EoM for 11-Dimensional Super-
gravity

Let us vary (3.2):

1 1
611, = /d”xé {\/—g (R - @F@)} - 5/5 (Flg A Flyg A Fig))

(A1)
1 1
=/d11£€5{\/—gR}—/dnﬁ{\/—g@ﬂi]} —5/5(F[4]/\F[4]/\F[3])-

The first term vanishes as it is a total derivative form. We will therefore focus on the
last two terms. We start with the last term, which is mainly a variation over the wedge
product, and for which (2.4) and (2.5) can be used as a means of explanation:

0 (Fig A Figg A Ap))
=0Fjg A Flg A A + Flg A OFjg A Ay + Flg A Fig A 0 A (A.2)
:3F[4} VAN F[4] A 514[3].
This is the last term for our final result in (3.4). Hence, the rest of the work is to derive

(3.3) and then show that the coefficient is correct. Continuing with (A.1) and turning
this into tensor form via (2.1),

1
/dllx\/__g@anqumnpq
1 (A.3)
=18 Fonpg e
At the same time, we can expend Fjy A [y as an 11-form component:
Flg N xFy = T716 -+ dx?* Ndx?? N - - da? (A4)
where z is the function that satisfies
/F[4] A *Fpy = /\/—gduxz. (A.5)
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A.2. DERIVATION OF EOMS FOR D-DIMENSIONAL SUPERGRAVITY

We can also express (A.4) based on the wedge product as follows:

11!
F1[4] VAN *F[4] = WF[“M (*F) i5-i11]) (A6)

where the expression of the Hodge dual can be found as follows:

1

*Fly = 36#1'~~M1v8~“v11Fvgmvu‘ (A7)

The following substitution leads us to the final results:

11! 1 o
Z€jy iy = 4'—7'F[Z'1...¢4 (5615.““1]1}8.,.@11}7 8 11)

11! 1 o
= — 11!z = (4|_7|Fi1'“i4E€i5.~.i11vg...v11FUSM@U) i (A8)
1 L
= Z= EFH-'-MF“MM'

Here, we have used a contraction of the Levi-Civita tensor via (2.12):

€i5i1108+ 011 i = (_1)4!7!5111”44 (A9)

Vg U1l ”

Now, we prove the equality of the middle terms in (A.1) and (A.4). Then, we can
show that the corresponding variation is as follows:

0 (Flay A %Fla)
=0 Fja) A xFlay + Flay A0 (+Fly)
=2 (0Fy A *Fly) (A.10)
=2 (5dA[3] A *F[4])
=2 (514[3} A d * F{4]) :

This leads to the correct factor and is thus a proof of (3.4).

A.2 Derivation of EoMs for D-Dimensional Super-
gravity

A.2.1 Variation with Respect to the Metric

We here discuss the variation with respect to the metric gy;ny. Considering the possible
variables that contain the metric, we have \/—g, g™ and g. We first perform the
variation on these values:

o9 =g"" g5 (gun)
5(v=9) = 537398 (g30n). (A1)

5 (g") = —g™ g"N 6 (gurn) -
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A.2. DERIVATION OF EOMS FOR D-DIMENSIONAL SUPERGRAVITY

Starting from the first term in (3.9),
B) / dPx/=g ("~ Run)
_ / 2 (5(v=9) (6™ Rarx) +v=9 (66" Rarw + V=99"V6 (Rar))  (A12)
_ /de (%\/_—ggMNR+ V=9 (=g"™ g™ Rps + 0) 5 (gun) -

The result leads to the Einstein equation:

—RMN 4 %gMNR =0 (A.13)

We then apply a variation to the second term:
1
5/de\/—g <—§VM(/§VM¢)
1 1
= [ (s/79) (~37u0v"s) + V=50 (59009

2
1 1 1
= / d’x <§v—ggMN <—§VM¢VM¢>) + Vg0 (_EVRQZ)VSQbQRS))
1 1 1
Z/d% {5\/—991‘” (_§VM¢VM¢> +V=g (—§VR¢V5¢ (—gRMgSN))} 8 (garn)

(A.14)

Combining the results from (A.12) and (A.14), we obtain

1 1 1

—Ryn + §gMNR + §VM¢VN¢ - ZQMNVACbVACb =0 (A.15)

Multiplying (A.15) by ¢™¥ and taking the trace leads to

D 1 D
R—Zgun — §VR¢VR¢ + ZVA¢VA¢ =0
D 1 R
= (1-=)R—=(1-=)VzoVEp=0 (A.16)
2 2 2
1
= R= §VR¢VR¢,
where we have Tr (gMNgMN ) = D. Hence, (A.15) can be simplified as follows:
Ryn = _ZQMNVA¢V ¢ — §VM¢VN¢ + ZQMNVA¢V ¢
1 (A.17)
= Ruyn = EVMvaNQb-
Now, we focus on the last term, which we can expand as

F[i} = Fg, ... Fg, ...gM5gle%2  glinSn, (A.18)

Applying variation to this form yields

Y (Fz) MR; NS R» S RnS

——= =—g Mg "'FR, Fg,. g . .gm 4

6(gMN) R s <A19)
= —F%...FégngQSQ . gftnSnn,
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A.2. DERIVATION OF EOMS FOR D-DIMENSIONAL SUPERGRAVITY

Here, we apply the antisymmetric property of the strength tensor F, which gives the n
in the result. Again considering the variation in the last term, we find that

Jonra(-5m)

e e?
Z/dDﬂf (5\/—99]\mfS (gmn) (_Z_n!F[i]) — V=959 (F[i])) (A.20)

ae

1 a¢
_/dD:L‘ (_\/__ggMN . (_e_'F[Q]) _ \/__ge_n (_FM...FN ) )) 5(9MN)~
n! " 2n/!
Combining all results, we obtain the following;:

1 1
Ryn — §QMNR - —VM¢VN¢ + gMNVA¢V o)
ea¢ eaqﬁ (A21)

F? — Iy Fy---=0.
+gMN4 ' n] — 2(n—1)! M. N
We use the same method to take the trace:
l)e“¢ ) e N
nt i~ 5yt =0
(A.22)

D, 1 D
R= S R=5VreVi6+ V40V 0 +

1 A e 2( _Qn)
:>R—§VA¢V ¢—2(n_1)!F ( QD)—O

2

Putting (A.22) back into (A.21), we obtain the following:

1 e® 1 _ D
Ryun — =VydVnd — ———Fy Fy -+ F? — = 2n =0
MN 5 MOV N St — 1)1 M-I + Fgune® <4 4n—1)! (1_%>>
1 et 1 1—n
Ryun — = —— ... F F? ¢— =0
=iy N 2vM¢VN¢ 2(n—1) M Nt LTgune Al 1= 127
1 e? n—1
=Ryn = =VyoV — | Fy Fn- — ————F? = 0.
MN = 5 MOV NG + 2(n— 1) ( M..EN n(D —2) gMN)
(A.23)
Here, we prove the first two equations in (3.10), showing that
e? n—1
Sun =—— | Fyr Fn -+ — ————F? ) A.24
YN 5 — 1) ( MENTT T D= 2) gMN) (A.24)

A.2.2 Variation with Respect to the Gauge Potential

Only the field strength contains the gauge potential, which enables us to focus on the
last term. We have performed this calculation in Section A.1. Using (A.10), we find that

5 / de? S5 By oc / €8 (Fly A *Fpuy)
ol (A.25)
= /d:vDead’ (6 (Ap—y) Ad* Fl)

resulting in
e"d x F, = 0. (A.26)
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A.3. DERIVATION OF 1-FORM SPIN CONNECTION

Applyinh the Hodge star to both sides yields the following:

*€a¢d * F[”} =0

A.27
=V (€a¢F[n]) =0. ( )

A.2.3 Variation with Respect to ¢

The second and last terms contain ¢. We first operate on the second term:
/ dz"6 (g™ V r¢Vs9)
_ / dz? (g7 (V 0¢) Vo + g5V ro (V508))
— / dz” (2g"°V r¢V 569) (A.28)
=2 / daxP g®V g (V rdpdp) — 2 / dxzP g™V gV rpd
=—2 / dzPVEV ppdp = —2 / dzPOpd .

For the last term, we have

/deé( “¢F2}) = /da: ae“¢F 200 (A.29)
Combining the above equations leads to

O¢ = 5 e“PF). (A.30)

nl

A.3 Derivation of 1-Form Spin Connection
Because the torsion vanishes, we obtain the 1-form spin connection

def +wEp Al =0. (A.31)
We can find the value of w by setting ' = pu:

det +whtp NeE =0
=d (e dzt) + why A e+ why A e =0
=d (e*") dz*) + wh, A AN dx” 4w, A PO dy™ =0 (A.32)
=d (e dz" + d (dz*) e )—l—w“ A e dg” —|—w” A PO dy™ =0
=M A (r)dr A dat + wty A e da” + Wt A PO dy™ = 0.
The above equation has three terms. Recalling that r = \/y™y™, we find that the first

and last terms both contain transverse elements, which ensures that the middle term

must vanish as follows:
why A e drt = 0

= wht, =0 (A.33)
= wkr=0.
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A.4. DERIVATION OF CURVATURE VIA VIELBEIN

Substituting dr = %dym into (A.32) leads to
eA(T)A’(r)y—dy” Adat + wh, A BT dy™ = 0,
” m
= — eA(T)A’(r)y—dx“ A dy™ + why, A ePOdy™ =0,
. m

:>(—6A(T)A/(T)y—dl’“ + W, eBOY A dy™ = 0,
. m

m A.34
=Wk, ePr) = eA(’")A’(r)y—d:C“, ( )
o r
oy™ 0 m
=wh, = e’B(T)eA(T)L—A(r)y—dx“,
- or oy™ r

=wh,, = e 500, Alr)et,
=Wt = =BG A(r)et,
We then perform a similar process by taking £ = m:
de™ + w™p A et =0,
=d(ePMdz™) + W, A et + W, A =0,
=ePW0, B(r)dy™ A dy™ + w™, A PO dy™ =0, (A.35)
=w™, = 0,B(r)dy™,
=™, = e P19, B(r)e™.
From this, we obtain the following relation:

Wt = B9 B(r)em — e=B9,, B(r)e™ (A.36)

A.4 Derivation of Curvature via Vielbein

Now, we need to relate the 2-form connection to the general Ricci tensor. We can con-

. EF . . .
struct a 2-form connection as REE = %R*I seL A el which can be combined with

RMN = RMBM Meﬂ N- (A37)

A.4.1 Ricci Tensor in Worldvolume

Let us start with the Ricci tensor in the worldvolume, which can be formed by tracing
over both the worldvolume and transverse space on the Riemann tensor:

RQ\ = REB&A + Rmm (A38)
The first part can be derived via

1
RMY = §Rﬁkggé8 A €% = =0 ADy Ae P51 6% 52 N\ &7 (A.39)

The antisymmetric property of the wedge product can be used, leading to
REZ o = — (‘97,1/18,,“46_23(5&3&g — 0556%,),
= R0 =— 8mA8mAe_2B(5ﬁ&nﬂ — Nyo)s (A.40)
= Rty p=—(d— 1)1yg O AD,, Ae™ 28,
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A.4. DERIVATION OF CURVATURE VIA VIELBEIN

Then, we perform a similar process:
Rum 1R‘”” eA el
£ (RE o5 N 62 4 Ry 6 6E), (A-41)
= Rﬁm;ﬂe A eZ.
Cancelling the vielbein basis and taking the trace yields the following:
R™yme = —€ Py (02A + (0,A)* + (D — d — 2)0,A0,B). (A.42)

Combining the two parts and applying the spherical symmetry leads to

r

d+1
R, = —1n,e? AP (A" +dA? + dA'B + i A’) : (A.43)

where we note that d = D — d — 2.

A.4.2 Ricci Tensor in Transverse Space

We reproduce the above method in the transverse space as follows:
Ry = RE g + R (A.44)

Using the antisymmetric property of the wedge product again, we obtain

R = %an béa A\ 6*
= R, = e 2B (040, B — 0x0, B) (65,0, — 65,6%,)
— (0O B — 0,0, B) (6% ,6™, — 6%,6™,) (A.45)
— 0, BOR B(6™,6™, — 6%,0™,)),
= B2, = € 2P (—(0,0,B — 0,0,B)d — 0y,(0,B)*d — 6,,0.B).

The part R£,,,,, has been derived in the previous subsection, and we only need to exchange
its indices:

Ry = e B ((0,0mA + O ADp A — O A0, B — 0, ADy B)6™0% + 0y AD, BS™,6%,),
= R = —¢ P((0,0,A + 8,A0A — 0,A0,B — 0,A0,B)d + 8,0, AD, Bd).

(A.46)
Summarising the above calculation, we obtain the following:
. 2d + 1 d
Ron = — O (B” L dAB +dB?+ gy —A’>
r r
(A.47)
YTy

72 r r

<JB” +dA” —2dA'B + dA? — dB? — le’ - 51,4’) .
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A.5. DERIVATION OF MAGNETIC FIELD STRENGTH

A.5 Derivation of Magnetic Field Strength

We can deduce the power of r via Biachi identity:

Oy Fym,, = 17~ (€myemng — (M4 Démymnpt?Ya/7°) (A.48)

where the maximum form can be reached is (n 4 1) form. In that case, any (n + 2) form
would vanish:

0 =€my-mnp Yal-

= 0 =€[my--mnq Yp)- (A.49)

:m (eml“'mnqyp + (_1)n+1€pm1-~mnyq(n +1) + - ) .
Here we antisymmetrized a (n 4 2) form and found similar terms in (A.48). Multiply y?
on both sides of (A.49), We got:

(Emyomnqlp) P + (0 + 1)(—1)”“(—1)"26m1--.mnpyqyp =0, (A.50)

= (€mymng) = (N + 1)€mym,plg¥pT ™
leading to Bianchi identity requirement for F,). Again, it shows our ansatz fulfils the
conditions.

A.6 Derivation of Brane Orbit

Continuing with our relabel on einbeins, one can express our time derivative component
in terms of L: ) s 3
L7 =et y"ym,

. (A.51)
= { = (676AL2 Te 3Aymym)
which can further substitute this back to the expression for e:
o 2772 |:266A( “6AT2 | - 3Aymym) ] + med,
3A,m,m <A52)
»emm| (14 S e

Now, our energy term depends on (7,7, gb) In order to get a equation purely depend
on radius and its derivative, we can then replace ¢ via angualr:

J == 3A2¢

b (A.53)
= ¢ =J—r 234
m

which can be put into the istropic y™y™ term. Thus, (A.52) only depends on radius and
its velocity. To get the equation for radius (3.46), we need to rearrange the energy term:

2
_ _ ) 5\ M
e2e7% — 2eme 3 4+ m? = m? + &4 (7“2 + r2¢2) —

L?’
m2
220764 9oy e3A — L2 Py e (A.54)
) L? J?
=72 = e 3 [ e g3 — 34 ) |
m2 r2
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Appendix B

Dimensional Reduction Calculations

B.1 Chern—Simons Dimensional Reduction

Here we implicate the reduction rule the Chern—Simons term [33].

1~ ~. 1 ~.. =~ 1 ~.. -
— Fi A FYF Al EFQ” A EFEA AT — — R A R Ag) €ijkimn.

S
I
ot

72

S
Il
N

1 ri I mn 1 ] rlmn
_EFQJ A\ FleAO P 5171]]{ AN Fll A Ag) €ijklmnp,

1
D:10§ 4/\F4/\A2,

].’“’ =~ ’LJ 1""2 "’j
D:92 _Z 4/\F4/\A1 —§F3/\F3/\A3 Eija

1 -~ ~ . 1 -~. ~ . 1-~. ~

1~ - 1 - . 1. .
D:?:(—6F4AF§A€)’“’+6F§AFgAA’f‘+§F§JAFQ’“‘AA3) €iikis

1 -~ -~ .. 1 ~. ~ 1 ~.. ~
D=6: (E L A FY AR TR FAR™ 4 §F2” A FFCA A’;) €:ikim, (B.1)
1

-

~ ~
=3 :mFlw N Fllmn A Alqueijklmnpqa

—9. [ijk a polmn Apqr

1296
B.2 Local and Global Symmetries in S! Compactifi-
cation

In this section, we will consider some important calculations that influence local and
global symmetries. Recall that we have the local transformation relation (4.33). By
choosing (M, N) as (z,2), (i, z) and (u,v), we can start with G, as follows:

5Gzz = §p2BGzzap¢7
5 (€7?) = 28G..56¢, (B.2)
= 6¢ = §p8p¢y
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B.2. LOCAL AND GLOBAL SYMMETRIES IN S COMPACTIFICATION

where we have substituted the ansatz for GG, in the second equation. A similar process
can be used for the rest of the calculations. For G, we find that

5Guz = gpapG,uz + szaué.p + Gzzaugzv
= £Pe*00,A,, + 28G 00 + €*° A,0,£" + ¥,
5 (209 A,) = 26G,.00 + 2P0 A,
= 5A, = E0,A, + A0, + 9N

(B.3)

For G, we have

5GMV = gpapGuV + Gpvaugp + Gupaufp + szaugz + Guzaugza
6 (2, + P ALA)) = 20**°g,,00 + €26, (B.4)
+ 28 A, A, 60 + P06 ALA, + PP ALA,,

which leads to
5guu = fpapg;w + gpuaufp + g,upaufp: (B5)

which proves the local symmetry of the D-dimensional metric.

Now, let us consider the global symmetry calculations. In this case, we ignore the x
dependence on our infinitesimal transformations, which gives the general expression for
a metric in (D + 1) dimensions in (4.38). For G .., we can derive the following equation:

0G,, = 2c¢G,, + 2aG,,,
§ (e2%%) = 288¢G.., (B.6)
= [0¢p = c+ a.

We can use the above result to further calculate G, as follows:

0G,, = cGy, + 2aGzp,
5 (e?P?A,) = 5 A, + 2BG.,.00,

B.7
= A, = —cG.,, (B7)
= 0A, = —cA,.
Using both expressions for d¢ and d.4,,, we can perform the final transformation:
0G,, = 2a62°‘¢g,ﬂ, + 2a626¢./4“./4,,, (B.5)

= 6g/ux = QQQ;W - 204.guu5¢7

which shows global symmetry in the dimensional reduction.

45



